Linear Algebra II April 10, 2019, Wednesday, 18:30 – 21:30, A. Jacobshal 01

Please write your name and student number on the exam and on the envelope. The exam contains 6 problems.

 $1 \quad (5+5+5=15 \text{ pts})$

- Inner product spaces
- (a) For a given a complex vector space \mathcal{V} , give the definition of complex inner product $\langle x, y \rangle$ on \mathcal{V} .
- (b) Now consider $\mathcal{V} = \mathbb{C}^n$ with $\langle x, y \rangle := y^H x$. Prove that this is an inner product on \mathbb{C}^n .
- (c) Let $A \in \mathbb{C}^{n \times n}$ be a Hermitian matrix. Show that $\langle x, Ax \rangle$ is real for all $x \in \mathbb{C}^n$.
- **2** (5+10=15 pts)

Cayley-Hamilton

Consider the real matrix

$$A = \begin{bmatrix} 9 & -6\\ 5 & -3 \end{bmatrix}$$

- (a) Determine the characteristic polynomial of A.
- (b) Compute α and β such that $\alpha A^5 + \beta A = I$.

3 (4+4+3+4=15 pts)

Positive definite matrices

Let $A \in \mathbb{R}^{n \times n}$ be a positive definite symmetric matrix.

- (a) Prove that all eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ of A are real and positive.
- (b) Prove that $\lambda_1^2, \lambda_2^2, \dots, \lambda_n^2$ are the eigenvalues of A^2
- (c) Show that $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the singular values of A.
- (d) Let Q be an orthogonal matrix such that $Q^T A Q = \Lambda$ with Λ the diagonal matrix with $\lambda_1, \lambda_2, \ldots, \lambda_n$ on the diagonal. Determine a singular value decomposition of A in terms of the eigenvalues λ_i and the matrix Q.

Consider the 3×2 matrix

$$M = \begin{bmatrix} 3 & 3\\ -\sqrt{2} & \sqrt{2}\\ 3 & 3 \end{bmatrix}.$$

- (a) Compute the singular values of M
- (b) Find a singular value decomposition for M.
- (c) Find the best rank 1 approximation of M.

5 (4+4+7=15 pts) Characteristic polynomial and minimal polynomial

Let A be a complex $n \times n$ matrix.

- (a) Give the definition of minimal polynomial $p_{\min}(z)$ of the matrix A.
- (b) Let λ be an eigenvalue of A with eigenvector x. Let p(z) be a nonzero polynomial. Show that $p(A)x = p(\lambda)x$.
- (c) Prove that if λ is an eigenvalue of A then $p_{\min}(\lambda) = 0$.

$$6 \quad (3+4+4+4=15 \text{ pts})$$

Consider the matrix

$$A = \begin{bmatrix} 0 & 0 & -1 \\ -2 & 1 & -1 \\ 1 & 0 & 2 \end{bmatrix}$$

- (a) Compute the characteristic polynomial of A.
- (b) Compute the minimal polynomial of A.
- (c) Determine the Jordan canonical form J of A.
- (d) Compute a nonsingular matrix S such that $S^{-1}AS = J$.

10 pts free

Jordan canonical form