Linear Algebra II

April 10, 2019, Wednesday, 18:30-21:30, A. Jacobshal 01

Please write your name and student number on the exam ánd on the envelope. The exam contains 6 problems.
$1 \quad(5+5+5=15 \mathrm{pts})$
Inner product spaces
(a) For a given a complex vector space \mathcal{V}, give the definition of complex inner product $\langle x, y\rangle$ on \mathcal{V}.
(b) Now consider $\mathcal{V}=\mathbb{C}^{n}$ with $\langle x, y\rangle:=y^{H} x$. Prove that this is an inner product on \mathbb{C}^{n}.
(c) Let $A \in \mathbb{C}^{n \times n}$ be a Hermitian matrix. Show that $\langle x, A x\rangle$ is real for all $x \in \mathbb{C}^{n}$.
$2(5+10=15 \mathrm{pts})$
Cayley-Hamilton

Consider the real matrix

$$
A=\left[\begin{array}{ll}
9 & -6 \\
5 & -3
\end{array}\right]
$$

(a) Determine the characteristic polynomial of A.
(b) Compute α and β such that $\alpha A^{5}+\beta A=I$.
$3 \quad(4+4+3+4=15 \mathrm{pts})$

Positive definite matrices

Let $A \in \mathbb{R}^{n \times n}$ be a positive definite symmetric matrix.
(a) Prove that all eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ of A are real and positive.
(b) Prove that $\lambda_{1}^{2}, \lambda_{2}^{2}, \ldots, \lambda_{n}^{2}$ are the eigenvalues of A^{2}
(c) Show that $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are the singular values of A.
(d) Let Q be an orthogonal matrix such that $Q^{T} A Q=\Lambda$ with Λ the diagonal matrix with $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ on the diagonal. Determine a singular value decomposion of A in terms of the eigenvalues λ_{i} and the matrix Q.

Consider the 3×2 matrix

$$
M=\left[\begin{array}{rr}
3 & 3 \\
-\sqrt{2} & \sqrt{2} \\
3 & 3
\end{array}\right] .
$$

(a) Compute the singular values of M
(b) Find a singular value decomposition for M.
(c) Find the best rank 1 approximation of M.
$5(4+4+7=15 \mathrm{pts}) \quad$ Characteristic polynomial and minimal polynomial

Let A be a complex $n \times n$ matrix.
(a) Give the definition of minimal polynomial $p_{\min }(z)$ of the matrix A.
(b) Let λ be an eigenvalue of A with eigenvector x. Let $p(z)$ be a nonzero polynomial. Show that $p(A) x=p(\lambda) x$.
(c) Prove that if λ is an eigenvalue of A then $p_{\min }(\lambda)=0$.
$6 \quad(3+4+4+4=15 \mathrm{pts})$

Consider the matrix

$$
A=\left[\begin{array}{rrr}
0 & 0 & -1 \\
-2 & 1 & -1 \\
1 & 0 & 2
\end{array}\right]
$$

(a) Compute the characteristic polynomial of A.
(b) Compute the minimal polynomial of A.
(c) Determine the Jordan canonical form J of A.
(d) Compute a nonsingular matrix S such that $S^{-1} A S=J$.

10 pts free

